Generalized Fronts for One-dimensional Reaction-diffusion Equations
نویسنده
چکیده
For a class of one-dimensional reaction-diffusion equations, we establish the existence of generalized fronts, as recently defined by Berestycki and Hamel. We also prove uniform nondegeneracy estimates, such as a lower bound on the time derivative on some level sets, as well as a lower bound on the spatial derivative.
منابع مشابه
Generalized Traveling Waves in Disordered Media: Existence, Uniqueness, and Stability
We prove existence, uniqueness, and stability of transition fronts (generalized traveling waves) for reaction-diffusion equations in cylindrical domains with general inhomogeneous ignition reactions. We also show uniform convergence of solutions with exponentially decaying initial data to time translates of the front. In the case of stationary ergodic reactions the fronts are proved to propagat...
متن کاملThree-dimensional Free Vibration Analysis of a Transversely Isotropic Thermoelastic Diffusive Cylindrical Panel
The present paper is aimed to study an exact analysis of the free vibrations of a simply supported, homogeneous, transversely isotropic, cylindrical panel based on three-dimensional generalized theories of thermoelastic diffusion. After applying the displacement potential functions in the basic governing equations of generalized thermoelastic diffusion, it is noticed that a purely transverse mo...
متن کاملDynamics of one- and two-dimensional kinks in bistable reaction-diffusion equations with quasidiscrete sources of reaction.
We study the evolution of fronts in a bistable reaction-diffusion system when the nonlinear reaction term is spatially inhomogeneous. This equation has been used to model wave propagation in various biological systems. Extending previous works on homogeneous reaction terms, we derive asymptotically an equation governing the front motion, which is strongly nonlinear and, for the two-dimensional ...
متن کاملExistence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations
We consider one-dimensional reaction-diffusion equations for a large class of spatially periodic nonlinearities – including multistable ones – and study the asymptotic behavior of solutions with Heaviside type initial data. Our analysis reveals some new dynamics where the profile of the propagation is not characterized by a single front, but by a layer of several fronts which we call a terrace....
متن کاملTransition fronts for periodic bistable reaction-diffusion equations
This paper is concerned with the existence and qualitative properties of transition fronts for spatially periodic reaction-diffusion equations with bistable nonlinearities. The notion of transition fronts connecting two stable steady states generalizes the standard notion of pulsating fronts. In this paper, we prove that the time-global solutions in the class of transition fronts share some com...
متن کامل